About Me
I am a second-year Ph.D. Student in Prof. Mohit Bansalโs group (MURGe Lab) at UNC Chapel Hill. Previously, I was a Research Resident under the supervision of Prof. Viet Anh Nguyen at VinAI Research, Vietnam. I received a bachelorโs degree in Computer Science from Hanoi University of Science and Technology in 2022.
My research focuses on mechanistic interpretability and inference-time interventions for interpreting and monitoring the behaviors of (multimodal) LLMs. Additionally, I am interested in post-training methods for LLMs, including Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR).
๐ฅ News
- September 2025 Our paper LASeR: Learning to Adaptively Select Reward Models with Multi-Armed Bandits is accepted to NeurIPS 2025!
- August 2025 Our paper Distributional Surgery for Language Model Activations is accepted to EMNLP 2025 Findings!
- July 2025 New preprint GrAInS: Gradient-based Attribution for Inference-Time Steering of LLMs and VLMs on using gradient attribution for steering LLMs and VLMs.
- May 2025 Our paper MAT-Steer: Multi-Attribute Steering of Language Models via Targeted Intervention is accepted to ACL 2025! Thanks Elias for helping present the paper!
Old news
- October 2024 Our paper Coverage-Validity-Aware Algorithmic Recourse is accepted to Operations Research!
- March 2024 I will be joining Prof. Mohit Bansal's group as a Ph.D. student at UNC Chapel Hill this Fall!
- May 2024 Our paper Cold-start Recommendation by Personalized Embedding Region Elicitation is accepted to UAI 2024!
- February 2024 New preprint Cost-Adaptive Recourse Recommendation by Adaptive Preference Elicitation on personalized algorithmic recourse with preference elicitation.
- January 2023 Our paper Distributionally Robust Recourse Action is accepted to ICLR 2023!
- January 2023 Our paper Feasible Recourse Plan via Diverse Interpolation is accepted to AISTATS 2023!
- October 2022 We are awarded an honorable mention at 2022 INFORMS Undergraduate Operations Research Prize!
- May 2022 One paper accepted to UAI 2022!
- January 2022 One paper accepted to ICLR 2022!
๐ Publications
* denotes equal contribution
Reward Models (RMs) are crucial to aligning large language models (LLMs), but the degree to which an RM specialized to one task (e.g. writing) generalizes to new tasks (e.g. math) is often not known a priori, often making using only one fixed RM to train LLMs suboptimal. However, optimizing LLMs with multiple RMs simultaneously can incur a prohibitively high computational cost and lead to conflicting signals from different RMs that may degrade performance. To address these challenges, we introduce LASeR (Learning to Adaptively Select Rewards), which frames reward model selection as a multi-armed bandit problem, efficiently and iteratively training LLMs using multiple RMs by selecting the most well-suited RM for each instance. On commonsense and math reasoning tasks, we show that LASeR boosts iterative LLM training, improving the absolute average accuracy of Llama-3-8B over three datasets by 2.67% over an ensemble of RM scores while also showing superior efficiency (e.g., a 2x speedup). Moreover, on WildChat (open-ended instruction-following tasks), LASeR leads to a 72.69% AlpacaEval win rate over the RM score ensemble baseline. Extending to long-context generation, LASeR improves by 2.96 F1 points (avg.) on single-document QA tasks and 2.97 F1 points on few-shot learning over the RM score ensemble baseline with best-of-n sampling.
Inference-time intervention (ITI) has emerged as a promising method for steering large language model (LLM) behavior in a particular direction (e.g., improving helpfulness) by intervening on token representations without costly updates to the LLMโs parameters. However, existing ITI approaches fail to scale to multi-attribute settings with conflicts, such as enhancing helpfulness while also reducing toxicity. To address this, we introduce Multi-Attribute Targeted Steering (MAT-Steer), a novel steering framework designed for selective token-level intervention across multiple attributes. We achieve this by learning steering vectors using an alignment objective that shifts the modelโs internal representations of undesirable outputs closer to those of desirable ones while enforcing sparsity and orthogonality among vectors for different attributes, thereby reducing inter-attribute conflicts. We evaluate MAT-Steer in two distinct settings: (i) on question answering (QA) tasks where we balance attributes like truthfulness, bias, and toxicity; (ii) on generative tasks where we simultaneously improve attributes like helpfulness, correctness, and coherence. MAT-Steer outperforms existing ITI and parameter-efficient fine-tuning approaches across both task types (e.g., average 3% accuracy gain across QA tasks and 55.82% win rate against the best ITI baseline).
Language models are prone to occasionally undesirable generations, such as harmful or toxic content, despite their impressive capability to produce texts that appear accurate and coherent. This paper presents a new two-stage approach to detect and mitigate undesirable content generations by rectifying activations. First, we train an ensemble of layerwise classifiers to detect undesirable content using activations by minimizing a smooth surrogate of the risk-aware score. Then, for contents that are detected as undesirable, we propose layerwise distributional intervention policies that perturb the attention heads minimally while guaranteeing probabilistically the effectiveness of the intervention. Benchmarks on several language models and datasets show that our method outperforms baselines in reducing the generation of undesirable output.
Rating elicitation is a success element for recommender systems to perform well at cold-starting, in which the systems need to recommend items to a newly arrived user with no prior knowledge about the user's preference. Existing elicitation methods employ a fixed set of items to learn the user's preference and then infer the users' preferences on the remaining items. Using a fixed seed set can limit the performance of the recommendation system since the seed set is unlikely optimal for all new users with potentially diverse preferences. This paper addresses this challenge using a 2-phase, personalized elicitation scheme. First, the elicitation scheme asks users to rate a small set of popular items in a ``burn-in'' phase. Second, it sequentially asks the user to rate adaptive items to refine the preference and the user's representation. Throughout the process, the system represents the user's embedding value not by a point estimate but by a region estimate. The value of information obtained by asking the user's rating on an item is quantified by the distance from the region center embedding space that contains with high confidence the true embedding value of the user. Finally, the recommendations are successively generated by considering the preference region of the user. We show that each subproblem in the elicitation scheme can be efficiently implemented. Further, we empirically demonstrate the effectiveness of the proposed method against existing rating-elicitation methods on several prominent datasets.
Algorithmic recourse emerges as a prominent technique to promote the explainability, transparency, and ethics of machine learning models. Existing algorithmic recourse approaches often assume an invariant predictive model; however, the predictive model is usually updated upon the arrival of new data. Thus, a recourse that is valid respective to the present model may become invalid for the future model. To resolve this issue, we propose a novel framework to generate a model-agnostic recourse that exhibits robustness to model shifts. Our framework first builds a coverage-validity-aware linear surrogate of the nonlinear (black-box) model; then, the recourse is generated with respect to the linear surrogate. We establish a theoretical connection between our coverage-validity-aware linear surrogate and the minimax probability machines (MPM). We then prove that by prescribing different covariance robustness, the proposed framework recovers popular regularizations for MPM, including the l2-regularization and class-reweighting. Furthermore, we show that our surrogate pushes the approximate hyperplane intuitively, facilitating not only robust but also interpretable recourses. The numerical results demonstrate the usefulness and robustness of our framework.
A recourse action aims to explain a particular algorithmic decision by showing one specific way in which the instance could be modified to receive an alternate outcome. Existing recourse generation methods often assume that the machine learning model does not change over time. However, this assumption does not always hold in practice because of data distribution shifts, and in this case, the recourse action may become invalid. To redress this shortcoming, we propose the Distributionally Robust Recourse Action (DiRRAc) framework, which generates a recourse action that has high probability of being valid under a mixture of model shifts. We first formulate the robustified recourse setup as a min-max optimization problem, where the max problem is specified by Gelbrich distance over an ambiguity set around the distribution of model parameters. Then we suggest a projected gradient descent algorithm to find a robust recourse according to the min-max objective. We also show that our DiRRAc framework can be extended to hedge against the misspecification of the mixture weights. Numerical experiments with both synthetic and three real-world datasets demonstrate the benefits of our proposed framework over the state-of-the-art recourse methods, which generate robust recourses.
Explaining algorithmic decisions and recommending actionable feedback is increasingly important for machine learning applications. Recently, significant efforts have been invested in finding a diverse set of recourses to cover the wide spectrum of users' preferences. However, existing works often neglect the requirement that the recourses should be close to the data manifold; hence, the constructed recourses might be implausible and unsatisfying to users. To address these issues, we propose a novel approach that explicitly directs the diverse set of actionable recourses towards the data manifold. We first find a diverse set of prototypes in the favorable class that balances the trade-off between diversity and proximity. We demonstrate two specific methods to find these prototypes: either by finding the maximum a posteriori estimate of a determinantal point process or by solving a quadratic binary program. To ensure the actionability constraints, we construct an actionability graph in which the nodes represent the training samples and the edges indicate the feasible action between two instances. We then find a feasible path to each prototype, and this path demonstrates the feasible actions for each recourse in the plan. The experimental results show that our method produces a set of recourses that are close to the data manifold while delivering a better cost-diversity trade-off than existing approaches.
Algorithmic recourse aims to recommend an informative feedback to overturn an unfavorable machine learning decision. We introduce in this paper the Bayesian recourse, a model-agnostic recourse that minimizes the posterior probability odds ratio. Further, we present its min-max robust counterpart with the goal of hedging against future changes in the machine learning model parameters. The robust counterpart explicitly takes into account possible perturbations of the data in a Gaussian mixture ambiguity set prescribed using the optimal transport (Wasserstein) distance. We show that the resulting worst-case objective function can be decomposed into solving a series of two-dimensional optimization subproblems, and the min-max recourse finding problem is thus amenable to a gradient descent algorithm. Contrary to existing methods for generating robust recourses, the robust Bayesian recourse does not require a linear approximation step. The numerical experiment demonstrates the effectiveness of our proposed robust Bayesian recourse facing model shifts.
Counterfactual explanations are attracting significant attention due to the flourishing applications of machine learning models in consequential domains. A counterfactual plan consists of multiple possibilities to modify a given instance so that the model's prediction will be altered. As the predictive model can be updated subject to the future arrival of new data, a counterfactual plan may become ineffective or infeasible, with respect to the future values of the model parameters. In this work, we study the counterfactual plans under model uncertainty, in which the distribution of the model parameters is partially prescribed using only the first- and second-moment information. First, we propose an uncertainty quantification tool to compute the lower and upper bounds of the probability of feasibility for any given counterfactual plan. We then provide corrective methods to adjust the counterfactual plan to improve the feasibility measure. The numerical experiments validate our bounds and demonstrate that our correction increases the robustness of the counterfactual plans in different real-world datasets.
๐ Honors and Awards
๐ป Experience
-
May 2025 โ August 2025
Applied Scientist InternAmazon Science ยท USA
-
August 2022 โ August 2024
Research ResidentVinAI Research ยท Vietnam